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On geological time scales, mineral weathering and
volcanic hydrothermal emissions are the ultimate

source for all dissolved and biogenically fixed silica (Si)
on Earth. However, on biological time scales, this “geo-
aspect” of silica biogeochemistry is only one part of the
story. The “ ‘bio’ in silica biogeochemistry” (eg Markewitz
and Richter 1998) has been studied less intensively,
though recent research has shown that processing of Si
within ecosystems greatly influences its transport and
retention (Conley 2002; Derry et al. 2005; Blecker et al.
2006). This challenges our ability to predict rates of min-
eral Si weathering, as the biological contribution is
poorly quantified. Assessing weathering rates is impor-
tant: mineral Si weathering is an important sink for
atmospheric CO2. Furthermore, relative to the well-stud-
ied elements nitrogen (N) and phosphorous (P; eg
Tiessen 1995; Boyer and Howarth 2002), the export of
silica from land is a crucial factor in the occurrence of
coastal eutrophication (Ittekot et al. 2000). Yet research

on wetland Si cycling has been scattered and incomplete,
and has never been summarized. This review will empha-
size the role of biota (ie vegetation, diatoms, sponges) in
Si cycling and show that, based on available data, Si
should be included in wetland nutrient budgets.

The most evident biological sink for Si is diatoms
(Bacillarophyceae), single-celled organisms abundant in
aquatic phytoplankton communities worldwide. Diatoms
take up dissolved silicate (DSi = ortho-silicic acid) and
deposit it as amorphous silica (ASi), often referred to as
biogenic silica (BSi), within the protective coating of the
diatom frustule (the cell wall of a diatomic silicate cell).
The ocean cycle of diatom ASi is characterized by rapid
recycling, with only 3% of yearly diatom ASi production
permanently buried in the ocean floor (Van Cappellen
2003). The “biological Si pump” is an important mecha-
nism by which C is transferred from the atmosphere to
the deep ocean (Dugdale et al. 1995). Ocean food webs
would collapse if buried ASi were not replenished by
inputs from land, via rivers. Many important global fish-
eries are dependent on diatom-based food webs (Officer
and Ryther 1980).

Another major biological factor in Si cycling is vegeta-
tion. Plants take up DSi from soil solution, and deposit it
as ASi, mainly in siliceous bodies known as phytoliths
(Piperno 1988). Phytoliths are more resistant to decom-
position than other plant tissues. They remain buried in
large quantities in soil (Clarke 2003), and are often used
as paleo-indicators in the reconstruction of past vegeta-
tion communities (Blinnikov 2005). Their solubility is
still several orders of magnitude greater than that of min-
eral silicates (Van Cappellen 2003). Conley (2002) has
estimated that the global annual fixation of phytolith sil-
ica (60–180 Tmol yr–1) is on the same order of magnitude
as the amount annually fixed in ocean diatom communi-
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Recent research has emphasized the importance of terrestrial ecosystems in the global biogeochemical cycle of
silica (Si). The production, retention, and dissolution of amorphous silica of biological origin in soils and veg-
etation effectively control terrestrial Si fluxes. However, surprisingly little is known about the role of wetlands
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• Wetlands are rich in biologically fixed, amorphous silica, and

may exert biological control over the silica cycle
• Hydrology and vegetation control processing of silica in wet-

lands; human interference has impacts on interactions
between wetland Si biogeochemistry on the one hand, and
climate change and eutrophication on the other

• Currently, the silica biogeochemistry of several types of wet-
land, including mangroves, Arctic peatlands, and riparian
wetlands, is poorly understood
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ties (240 Tmol yr–1), with soils containing orders of mag-
nitude more ASi, primarily buried as phytoliths. As with
cycling in the oceans, ASi recycling drives the terrestrial
Si cycle.

Wetland ecosystems, which represent a link between
terrestrial and aquatic environments, therefore attract
special attention. Wetlands interact strongly with river
biogeochemistry, and lowland wetlands form large buffers
between upstream ecosystems and rivers and estuaries.
Wetland systems are characterized by fast plant growth
and high biomass, with intense recycling and storage of N
and P. Furthermore, wetlands are often dominated by
grasses, which are known to accumulate large quantities
of ASi (eg Struyf et al. 2005). Yet, there has been very lit-
tle research on Si cycling in these systems, compared to N
and P. This is surprising, since the relative input of Si
compared to N and P is an essential factor controlling
coastal eutrophication.

Here, we summarize previous research on wetland Si
cycling, pinpoint its likely importance, and discuss future
research possibilities and challenges. We encourage others
to include the measurement of Si in their studies of nutrient
biogeochemistry within wetland ecosystems, so that our
knowledge concerning this important nutrient can catch up
with the already abundant literature on N and P.

� Si in wetland vegetation and soils

A considerable number of wetland plant species, primar-
ily in coastal wetland systems, have been analyzed for
their ASi content. We have summarized results for some
plants sampled in situ in wetlands, including work by
Lanning and Eleuterius (1981, 1983, 1985; WebTable 1).
The phylogenetic variability in the ASi deposition by
plants has been summarized in Hodson et al. (2005).
General trends are also recognizable in wetland species:
monocots contain more ASi than dicots, and Poaceae
(grasses) and Cyperaceae (sedges) are the best repre-
sented families among the Si-accumulating species.
Exceptionally high values (> 20% of dry weight as ASi)
have been found in bamboo (Arundinaria gigantea), for
instance. 

High ASi found in two species of wild rice (Zizania
aquatica and Zizanopsis miliacea) are similar to the high
values found in commercial rice (Oryza sativa). Years of
intensive rice cultivation have depleted some rice fields
with respect to Si, and this has been linked to declining
rice yield (Savant et al. 1997). Silica-rich commercial fer-
tilizers are often applied to help ameliorate the effects of
Si limitation (Korndörfer and Lepsch 2001).

Silica accumulation provides plants with several com-
petitive advantages, including enhancement of growth
and yield, increased shoot rigidity and protection against
physical stress, promotion of photosynthesis, and resis-
tance to disease, herbivores, metal toxicity, and salinity
(Epstein 2001). High ASi content has recently been
shown to decrease grass palatability for herbivores, and

greater levels of  herbivory increase investment in defense
structures (Massey et al. 2007). Efficient use of Si by some
plant species or varieties potentially influences competi-
tiveness in dynamic environments. The high silicifica-
tion of culm sheaths (Lau et al. 1978) gives Phragmites
australis extra rigidity during internodal growth, in con-
trast to most other grasses, which grow from the top node
only. The protective leaf sheath around P australis culms
could partly explain the ability of this species to invade
highly dynamic ecosystems, such as tidal marshes and
mudflats. In North America, an invasive, non-native
genotype of P australis is considered to be a threat to local
biodiversity (Saltonstall et al. 2002), spreading rapidly
and out-competing native species.

The growth of high-biomass plant communities rich in
phytolith ASi can result in the burial of abundant ASi in
wetland soils. A review by Clarke (2003) shows that phy-
toliths (but also sponge spicules and diatoms) are a major
constituent in the surface soil of wetlands. Swamp soils
contained between 3.2% and 4.5% opal (amorphous sil-
ica) by grain abundance and alluvial plains contained
2–24% opal, while in seasonal wetlands, opaline material
constituted 48%–100% of all grains. Although diatoms
and phytoliths are the most studied forms of ASi, the
importance of sponges has been confirmed by Andrejko et
al. (1983) for the Okefenokee Swamp (Florida, Georgia)
and by Slate and Stevenson (2000) for the Florida
Everglades. In inland peat soils, such as those of the
Okefenokee Swamp, biogenic ASi is the predominantly
stored mineral, and sponges can comprise a major part of
the ASi.  

These results do not provide an actual estimate of
weight percentage of ASi in soils, obtained by wet-alka-
line extraction techniques (Sauer et al. 2006; Saccone et
al. 2007). ASi content in weight percentage of wetland
soils has been published for tidal mesohaline marshes
(US) and freshwater marshes in Belgium, and for the
Everglades (US) in Cladium spp and Typha spp vegeta-
tion. Soils contained between 0.6% and 0.9% ASi by
weight (Norris and Hackney 1999; Struyf et al. 2005) in
tidal marshes, and between 0 and 0.6% by weight in
Everglades soil (Jensen et al. 1999). Depth gradients in
freshwater tidal marshes showed a clear decline in ASi
content with depth, indicating gradual dissolution of
ASi. Freshwater marsh ASi content per square meter
(1500 g Si m–2 in upper 30 cm) was similar to the content
estimated in tallgrass-dominated inland grasslands
(Blecker et al. 2006). In grasslands, increased precipita-
tion enhanced phytolith dissolution and Si export; fre-
quent inundation and refreshing of soil water had similar
effects in tidal wetlands (discussed below). Initial analy-
ses show that inland sub-Arctic peats dominated by
sedges contain 1–5% of amorphous Si by weight percent,
which is one order of magnitude above amounts stored in
tidal wetlands and the Everglades (E Struyf unpublished),
and confirms the capacity of peatlands to accumulate
large amounts of ASi.
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In Everglades soils, ASi content was four times higher
under Cladium spp than under Typha spp (Figure 1a); this
is consistent with plant ASi content found in other stud-
ies of these genera (23 versus 4 Si mg [g biomass]–1;
WebTable 1). This indicates a direct link between soil
retention of Si and Si content of vegetation. Retention of
Si, relative to N and P, in soils under Cladium spp was 4–5
times higher than relative retention in soil under Typha
spp vegetation (Figure 1 b,c). For P, this was sharpened
because Typha vegetation also had higher soil P content
than did Cladium species. Similarly, soils underlying
deciduous vegetation in the Hubbard Brook watershed
(New Hampshire) had higher ASi content than soils
dominated by evergreens; this is also consistent with
plant ASi content (L Saccone unpublished). The abun-
dance of phytoliths in peat soils further indicates a proba-
ble link between ecosystem structure (eg vegetation) and
soil ASi content. 

� Tidal wetlands and Si biogeochemistry

Among wetland ecosystems, tidal marshes have been stud-
ied most extensively in terms of their Si biogeochemistry
(Gardner 1975; Scudlark and Church 1989; Norris and
Hackney 1999; Struyf et al. 2005, 2006, 2007 a,b). These
systems act as ASi recycling surfaces, importing ASi while
exporting DSi. Nevertheless, ASi is not completely recy-
cled; tidal marshes tend to be net sinks for ASi in estuar-
ies. Higher sedimentation rates result in a more efficient
burial of ASi (Struyf et al. 2007a). Export of DSi is greatest
during summer and spring, when DSi concentrations in
inundating waters are depleted by diatoms (Scudlark and
Church 1989; Struyf et al. 2006). Tidal marshes may buffer
estuarine DSi in times of limitation, when recycling can
exceed freshwater runoff. Export of DSi is most strongly
connected to the slow advective (horizontal) release of
water retained in the marsh after high tide, both from
interstitial water and puddles, which contain DSi concen-
trations of 100–600 µM (Hackney et al. 2000; E Struyf pers

obs). Arndt and Regnier (2007) recently modelled only
diffusive fluxes of DSi, and showed that direct diffusive
efflux is minor, confirming that the source of observed DSi
export in detailed observational studies is advective fluxes
(Gardner 1975; Scudlark and Church 1989; Struyf et al.
2006).

The sinks and fluxes of Si in a freshwater tidal marsh
dominated by P australis are summarized in Figure 2.
Sediment ASi pools are large compared to vegetation. In
practice, most export of DSi occurs during only a few
months in summer and spring. The vegetation is, in
essence, self-sufficient for Si. Nevertheless, the abundant
litter layer has an important role in the Si buffering capac-
ity of tidal marshes. The storage of ASi in P australis in
the Scheldt freshwater marshes of Belgium (Figure 3)
accounts for over 90% of all ASi in vegetation (although
biomass accounts for only 50%; Struyf et al. 2005a).
Decomposition experiments have shown that recycling of
reed ASi is very efficient, with over 85% dissolving within
a year after culms collapse. In Scheldt marsh sediment,
approximately 80% of all opal grains were diatomaceous
in origin, which is consistent with observed rapid recy-
cling of phytoliths (W Guo and DJ Conley unpublished).

In tidal flats, DSi export to flood water was observed at
low elevations, while import was observed higher on the
flat, again indicative of porewater seepage and enrich-
ment. In general, export of DSi has been observed from
tidal flat sediments, although intense benthic diatom
blooms in spring and summer can turn tidal flats into
strong sinks for DSi. Export of DSi from tidal marshes was
between 0 (in winter) and 20 mg Si m–2 ha–1 (Scudlark
and Church 1989; Struyf et al. 2006). In tidal flats, export
rose to 67 mg Si m–2 ha–1, but on average was 5–10 mg Si
m–2 ha–1 (eg Asmus et al. 2000).

� Non-tidal wetlands

There are very few silica budgets for non-tidal wetlands,
as compared to those for N and P. We are aware of only
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FFiigguurree  11.. (a) Storage of soil ASi in Cladium spp and Typha spp vegetation types in the Everglades wetlands of Florida, and the
relative molar ratio of (b) Si to P and (c) Si to N in the soil in these vegetation types. Error bars represent standard errors on the
mean. After data from Jensen et al. (1999).
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four budget studies that incorporate
Si: one in a temperate freshwater
marsh, one in a peat bog, and two
from a coastal alluvial plain (Table 1).
DSi budgets were constructed in three
of the four cases and between 6% and
21% of all DSi was retained; such sub-
stantial retention warrants further
investigation. Interestingly, dissolved
inorganic nitrogen retention was
between 23% and 61% in the same
systems, and soluble reactive phos-
phate retention was between 46%
and 94%, again indicating nutrient
ratio shifts through biogeochemical
processes in the wetlands. No ASi
budgets were found. Data are too
scarce for overall conclusions to be
drawn for all wetland types. They do,
however, confirm that wetlands
potentially represent an important yet
unquantified factor in Si biogeochemistry, as they are for
N and P.

Inland wetlands are potential storage zones for DSi
transformed into ASi. Because of the important burial of
relatively reactive ASi (compared to mineral Si), they
also comprise intense ASi recycling zones. Data indepen-
dently acquired in Swedish boreal rivers by Humborg et al.
(2004) and in Russia by Zakharova et al. (2007) demon-
strate a positive relationship between percentage of peat
wetland coverage in river basins and DSi concentrations
observed in the rivers (Figure 4). The high observed DSi
concentration in one Russian basin at 0% wetland was
caused by excess subsurface transport
of mineral weathering products, due to
an exceptionally high river slope. The
results clearly show the potential
importance of wetlands (and other
ecosystems) in governing DSi fluxes
through river basins, highlighting the
importance of biological processes in
Si biogeochemistry.

The paucity of information on Si
means that we can only hypothesize
about the internal factors influencing
Si processing in riparian wetlands, sub-
Arctic peat bogs (Figure 5), flooded
forests, alluvial plains, non-tidal wet-
lands,  mangroves, and saltwater and
brackish tidal marshes. This lack of
knowledge is best illustrated by com-
paring keyword hits among articles
published in the scientific journal
Wetlands (Society of Wetland
Scientists) between 1990 and 2007,
which provides an indicator of the pop-
ularity of studies on Si relative to N and

P. In article titles, the keywords “nitrogen” and “phospho-
rus” delivered 39 and 41 hits, respectively (out of 933
papers), while neither “silicon”, “silicate”, nor “silica”
resulted in a single keyword hit. The results were even more
striking for abstracts (1981–2007): “nitrogen” and “phos-
phorus” had 92 and 88 hits, respectively, while “silicon”,
“silicate”, and “silica” returned just three hits, only one of
which was a budget study (Krieger 2003). Another consid-
ered saline lake ecology, and was irrelevant to this topic.

The potential for Si retention has previously been
demonstrated for forests (Bartoli 1983) and for grasslands
(Blecker et al. 2006). Forests (Fulweiler and Nixon 2005)

FFiigguurree  22.. Stocks and yearly fluxes of DSi and ASi within a Belgian freshwater marsh.
Sediment stocks are for the upper 30 cm. Litterfall and DSi uptake by vegetation equal
each other on an annual time scale. After Struyf et al. (2005, 2006, 2007 a,b).
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have the potential to reduce the transport of DSi by rivers
by almost 50% during the growing season. Consistent
with studies from other ecosystems, all data in this review
indicate that wetlands are major storage and recycling
hotspots for ASi. 

� Conclusions

Retention and recycling potential

Tidal marshes and tidal flats flood on a regular basis, creat-
ing a large potential for import, export, and recycling.
High ASi concentrations in biomass create ideal condi-
tions for tidal marshes to play a buffering role. Similar
observations have been made in grassland ecosystems,
with a higher export of DSi in tallgrass wet grasslands rel-
ative to drier areas (Blecker et al. 2006).

The hydrology of other wetland types can differ greatly
from tidal marshes. Sub-Arctic peat bogs, characterized
by lengthy water residence times, contained up to 5% of
ASi by weight percentage, an order of magnitude more
than tidal and fluvial wetlands. We hypothesize that
inundation volume, water residence time, and flooding

frequency are deciding factors governing
ASi retention and recycling in wetlands: 

• The regular import of water (flooding
frequency) enhances deposition of sus-
pended solids; sediment-associated phy-
toliths and diatom ASi are imported
along with settling sediment.

• Long water residence time increases the
potential for ASi retention, as equilib-
rium concentrations will be reached in
soil water for DSi. As a result, ASi recy-
cling will slow considerably, as dissolu-
tion is enhanced by the  low ambient DSi
concentrations (Van Cappellen 2003).
High evaporation will further increase
retention, as this essentially represents
the loss of non-silica-enriched water. 

• Ecosystem structure (grass and sedge
abundance, abundance of sponges and
diatoms) is highly dependent upon
hydrology.

Studies in other ecosystems support our hypothesis.
Lakes are characterized by continuous import of nutrients,
a large volume and low reaction surface (high lake volume
relative to sediment area), and a relatively long water res-
idence time. Lakes can retain over 90% of boundary input
of Si, buried as ASi in lake sediments (Conley et al. 1993).
In addition, the creation of artificial lakes behind dams is
severely reducing DSi and ASi export to coastal zones, as
a result of both ASi burial in sediments (Humborg et al.
1997) and reduced water–terrestrial soil contact times
(Humborg et al. 2002). In Sweden and Finland, relative
lake area in river basins is negatively correlated to DSi
concentrations in rivers, even though rivers are highly
oligotrophic (ruling out phytoplankton burial as an ASi
sink; Conley et al. 2000). Damming transforms wetlands
into permanent lakes and reduces contact efficiency
between the water phase and ASi-rich surfaces.

In grasslands, ASi in aboveground vegetation increases
with higher precipitation (more water availability and
nutrient input). At the same time, recycling of buried
phytoliths is much more intensive with increased precip-
itation (flooding frequency), resulting in less effective
burial of ASi and more intense weathering and DSi
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FFiigguurree  44.. Relation between percentage of peat wetland coverage in river basins
and DSi in draining rivers in boreal Sweden (data from Humborg et al. 2004)
and Russia (data from Zakharova et al. 2007). 

Table 1. Net discharge weighted retention (NRDW, %) of DSi, dissolved inorganic nitrogen, soluble reactive phos-
phate, total nitrogen, total phosphorus, and upstream and downstream concentrations of DSi, after passage through
wetland ecosystems    

NRDW (%) µM
Type DIN DSi SRP Tot N Tot P U DSi D DSi Authors Country

Alluvial plain/coastal freshwater wetlands 23 6 46 na 34 251 140 Krieger (2003) USA (Ohio)
Peat bog, dwarf shrubs na 21 94 63 42 61 36 Emmett et al. (1994) UK (Wales)
Temperate freshwater marsh 61 14 na na 36 118 102 McCrimmon (1980) Canada
Coastal brackish wetlands na na na na na 106–110 29–67 Lane et al. (2004) USA (Louisiana)
Notes: DIN: dissolved inorganic nitrogen; SRP: soluble reactive phosphate;Tot N: total nitrogen;Tot P: total phosphorus; U DSi: upstream DSi; D DSi: downstream DSi; na: the
variable was not measured.
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export (Blecker et al. 2006). Although
recycling intensity is extreme in tidal
marshes, storage is still comparable to
that in ecosystems such as forests and
dryland grass prairies (L Saccone unpub-
lished), suggesting both high storage and
recycling potential.

� Future perspectives

We strongly encourage researchers to
include Si in biogeochemical studies of
wetlands in the following ways:

(1) Measure import and export of ASi
and DSi in wetlands, to determine
the size of the net sink or source; Si
balances should be constructed for
all wetland types, including balances
for diatom, sponge, and phytolith
ASi.  

(2) Characterize the size of ASi pools in wetland soils and
vegetation along a wide range of wetland habitat
types. Although methods have long been available
for the measurement of ASi in aquatic sediments
(Demaster 1981), these wet chemical extractions of
ASi have recently been shown to be acceptable for
the complex mixture of ASi compounds in soils
(Saccone et al. 2007).  

(3) Establish a link between C and Si cycling in wetlands.
Arctic wetlands, in particular, are among the most
efficient C sinks in the global C cycle. Although Si
weathering is closely linked to the C cycle through
the uptake of atmospheric CO2, budgets have not
taken into account ASi retention and weathering,
potentially biasing C budgets in the Arctic. The
abundance of ASi-rich liverworts (Hodson et al.
2005) in Arctic marshes increases potential ASi
retention.

(4) Conduct comparative studies along hydrological gra-
dients of drainage, evaporation, flooding frequency,
and residence time.

(5) Test for the retention of Si in riparian and sewage-
treatment wetlands, aimed at reducing nutrient dis-
charge to aquatic systems.

Such research should allow us to move into the next
phase of wetland ecosystem science, with the develop-
ment of mechanistic models of Si cycling, and will help
us to predict the influence of wetlands (and loss of wet-
lands) on Si weathering, and hence climate change and
eutrophication. 
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